

Design for Recycling

Dr. ir. Antoinette van Schaik

MARAS, The Hague, The Netherlands

Design for Recycling and Resource Efficiency

Product-Centric View

General initial question
How can we use a product as resource?

EoL Product Design Pretreatment Dismantling/shredding/sorting Steel (Fe)
Aluminium (Al)
Cobalt | Nickel (Co | Ni)
Precious metals | Copper (Co)
Others, e.g. Indium (In)
Chemical & Processing

Metallurgical processing Less waste

How can we define DfR rules to optimise Resource Efficiency?

Design for waste stream sorting

Design for

disassembly

Design for shredding/ liberation Design for sorting Design for recovery in final treatment processing

10 Design Rules and Simulation Derived Guidelines

Fundamental DfR rules

- 1. DfR rules are **product and recycling system specific**; oversimplification of recycling by defining general DfR rules will not produce the intended goal of resource efficiency
- 2. DfR needs model and simulation based quantification
- 3. **Design data** should be accessible/available in a format which is compatible with the **detail** required to quantify and optimise recycling performance of products for all metals, materials and compounds present
- 4. Economically viable infrastructure and rigorous tools must be in existence for realizing industrial DfR rules and methodologies
- 5. **CAD/Design** tools must be **linked** to recycling system process **simulation tools** to realise technology based, realistic and economically viable DfR

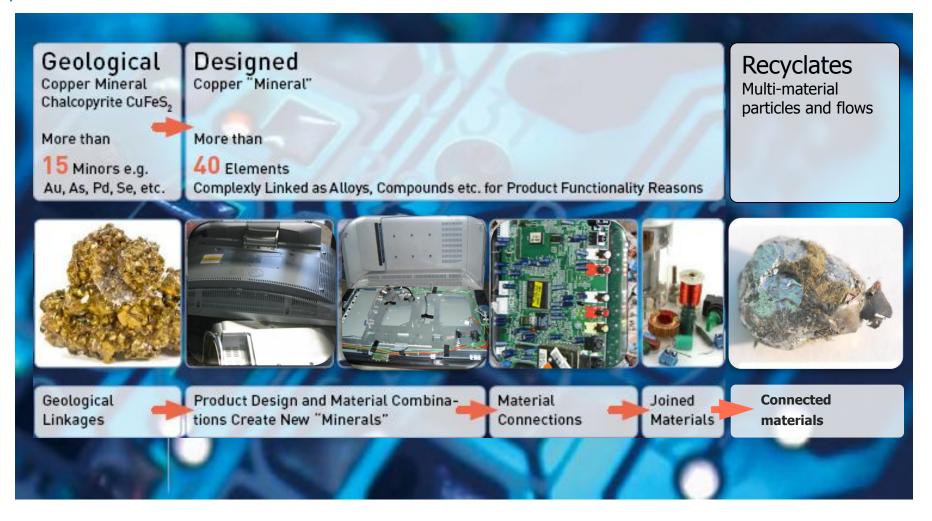
Note : All DfR rules/guidelines are subject to a mindful consideration of product/component functionality and should not impair these

10 Design Rules and Simulation Derived Guidelines

Possible DfR guidelines – Derived from Fundamental DfR Rules

Iteratively checked by simulation and validity

- 6. Identify and minimize the use of materials which will cause losses and contaminations in recycling due to material characteristics and behaviour in sorting
- 7. Identify components/clusters in a product, which will cause problems and losses in recycling due to **combined and applied materials**
- 8. Design clusters or sub-units in products that can be easily removed and which match with the final treatment recycling options (i.e. Metal Wheel)
- 9. Labelling (including carefully considered standardisation) of products/components based on recovery and/or incompatibility for easy identification (and removal) from recyclates and waste streams
- 10. Be mindful of liberation of materials in design (Design for Liberation)



DESIGN FOR RECYCLING RULES

DfR Rule 1 : DfR is product specific

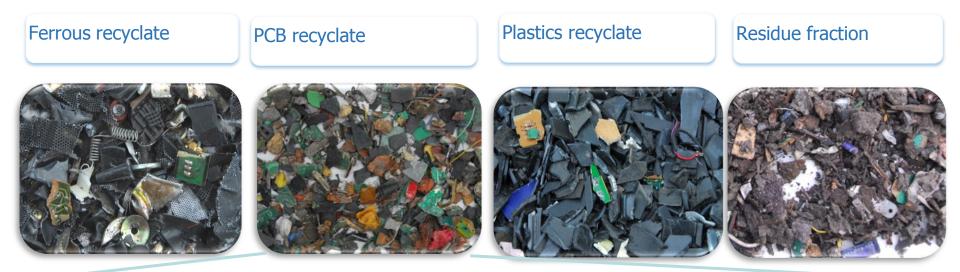
DfR rules are product and recycling system specific - each product has a unique recyclability profile

DfR Rule 1 : DfR is product specific

Each product has a recyclability profile and a set of product and recycling system specific DfR guidelines

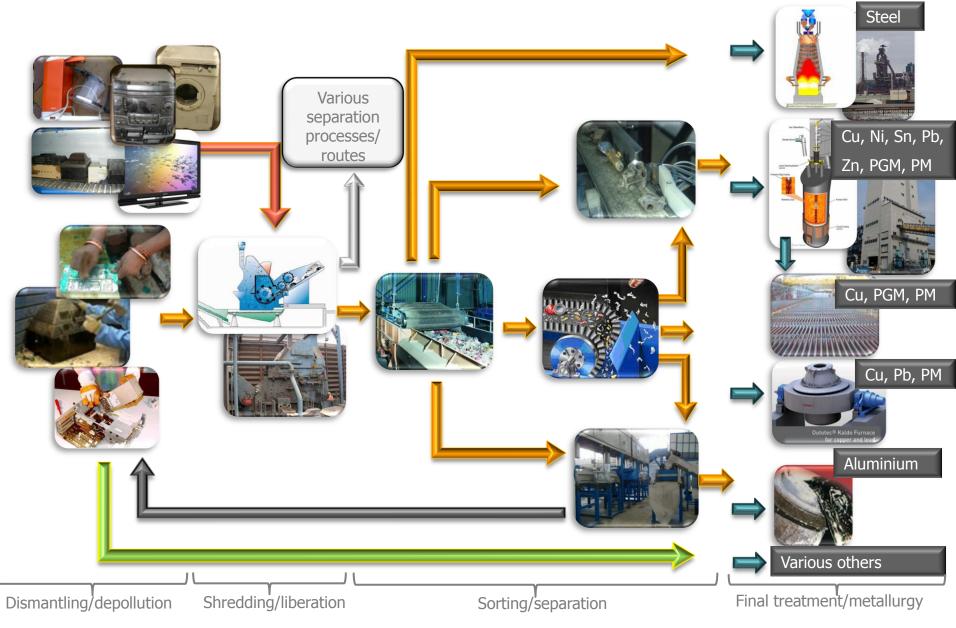
Recoverability	PMs		PGMs		Rare E	arth (Oxi	ides)	Other					
per application	Ag	Au	Pd	Pt	Y	Eu	Other	Sb	Co	In	Ga	W	Ta
December 201	1						_						
Recovery possible If separatly recovered a	nd/or if th	nere is an	propriate	technolog	w and reco	verv avail	able.						
	na, or in ci	iere is up	propriate	coornino co g	,y und rece	very avai	doto.						
Washing machine													
Large Hh Appliance Video recorder													
DVD player													
Hifi unit													
Radio set													
CRT TV													
Mobile telephone													
Fluorescent lamps	•		•						•				
LED													
LED LCD screens											•		
Batteries (NiMH)													
batteries (MMH)					•	•	•		•				
Limited recovery und	ler certa												
If separatly recovered. I				during se	paration a	nd/or prod	cessing/m	etallurgy.	Recovery	if approp	riate syst	ems exist.	
Washing machine													
Large Hh Appliance													
Video recorder							•						
DVD player			ě										
Hifi unit													
Radio set													
CRT TV			i i										
Mobile telephone													
Fluorescent lamps						•							
LED													
LCD screens		•											
Batteries (NiMH)													
Datteries (MiMil)													
No separate Recover	y												
Pure recovery not possi	ible. Lost	in bulk re	cyclates d	luring sep	aration an	d/or durii	ng metallu	irgy into di	ifferent n	on-valual	ble phases	s.	
Washing machine		••	••										
Large Hh Appliance													
Video recorder								•					••
DVD player								•					
Hifi unit							•	•					••
Radio set							•	•					
CRT TV								•					
Mobile telephone					•	•	•						
Fluorescent lamps												•	••
LED												•	
LCD screens													
Batteries (NiMH)													

DfR Rule 1 : No oversimplification


Oversimplification of recycling by defining general DfR rules will not produce the intended goal of resource efficiency

DfR Rule 2 : Quantification

Quality of recyclates : design, shredding and sorting determines recoverability and recycling of product and components (example on Printed Circuit Board)


Different appearances of PCB in (PCB) recyclates

DfR Rule 2 : Quantification

DfR needs model and simulation based quantification of recycling performance

DfR Rule 3 : Design data

Design data on product composition and construction should be available in a consistent format that matches with the detail required to quantify and optimise recycling

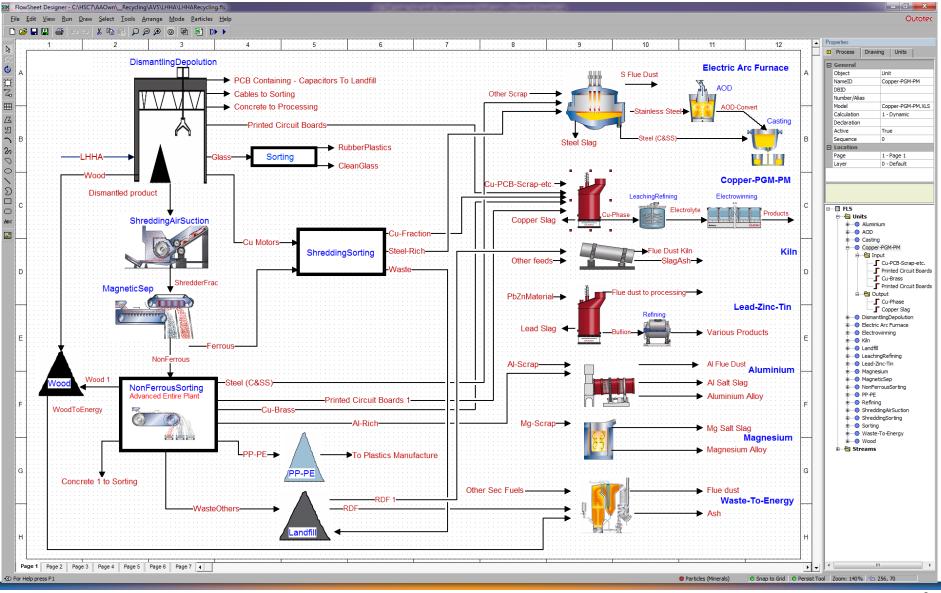
Material usage and material combinations in products

Connection of complex components to structural parts/materials

Material usage, chemical compounds and combinations in components and its variations

Chemical composition and compounds in e.g. electrical components and its variations

DfR Rule 4 : Infrastructure and tools


Robust metallurgical infrastructure should be in place to ensure maximum recovery

DfR Rule 4 : Infrastructure and tools

Rigorous tools for recycling simulation and DfR

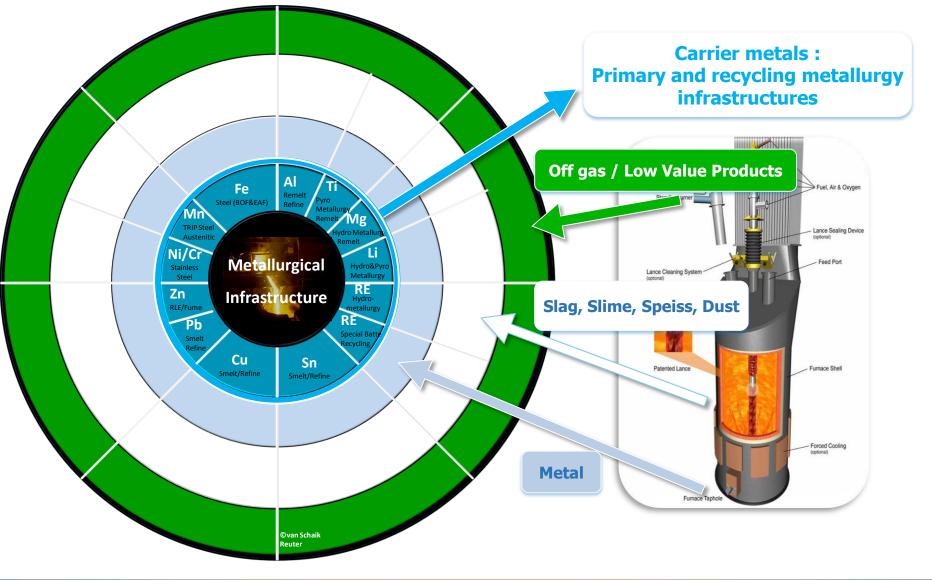
© MARAS

SIMULATION DERIVED GUIDELINES

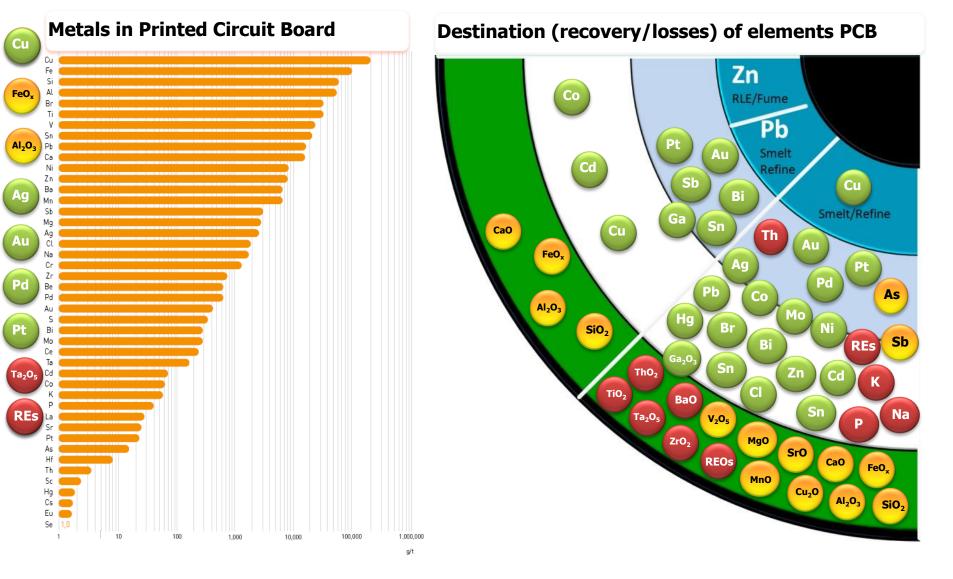
Guideline 6 : Material characteristics

Identify and minimize the use of materials which will cause losses in recycling due to material characteristics and behaviour in sorting

Guideline 7 : (In) compatibility of combined materials


Identify and minimize the use of materials which will cause losses due to combined & applied materials

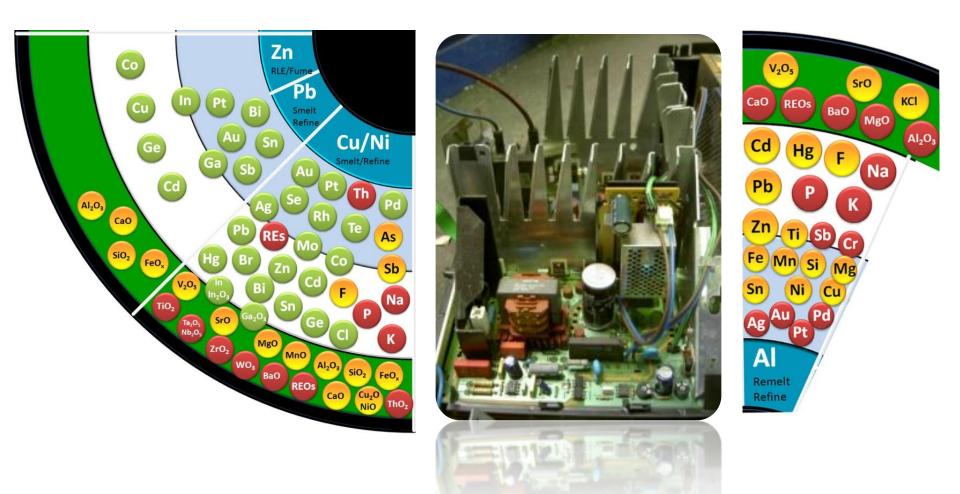
Guideline 7 : (In) compatibility of combined materials


Society's Essential Carrier Metals: Metal recycling products, by products & residues

Guideline 7 : (In) compatibility of combined materials

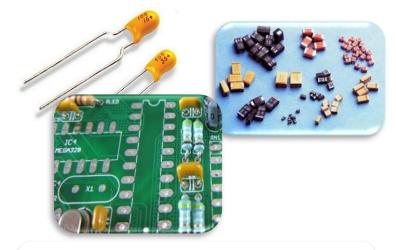
Recovery&losses determined by quality and destination/processing route of recyclate/component

Guideline 7 (In) compatibility of combined materials


Compatibility tables for a first quick screening – based on Metal Wheel

Materials in input streams (from WEEE materials)	Society's Essential Carrier Metals: Primary Product Extractive Metallurgy's Backbone (primary and recycling metallurgy)								
To Remelting, Smelting, Hydrometallurgy, Refining	Fe Steel (BOF&EAF)	Al Remelt/Refine	Cu Smelt/Refine	Zn RLE/Fume Pb Smelt/Refine	Ni/Cr Stainless Steel	Rare Earths Hydrometallurgy	Rare Earths Special Battery Recycling		
PCBA (washing machine/LHHA)						1			
Ag									
Al									
Al ₂ O ₃									
Au									
Ві									
Br									
сі									
Cr									
Cu									
Cu ₂ O									
Fe									
FeO _x									
Ni									
Pb									
Pd									
Sb									
Sb ₂ O ₃									
Si									
SiO ₂									
Sn									
Zn									
Elastomers									
Thermosets									
Thermoplastics (flame retardants etc.)									
Ероху									

Guideline 8 : Design matching with final treatment


Design clusters or sub-units, which match with the final treatment recycling options (Metal Wheel) and that can be easily removed

Guideline 9 : Labelling/Sorting

Labelling and marking for Waste stream Sorting and (Automated) Disassembly & Sorting

Ta capacitors – color/identification based labelling & easy to break connections

CFL versus LED lamps

Compressors - Marking of tapping point

 Hode 1.
 00275/kIIII

 95280/5325

 228-2490
 58Hz

 1394
 CLASS N

 TOTRL GROSS VOLUME II: 267
 R 134a

 FREEZER GROSS VOLUME II: 116
 Kg 0.120

 COMMENSATION COMMENSATION COMMENSATION COMMENSATION COMMENSATION
 COMMENSATION COMMENSATION

Standardisation of marking/identification (incl. position) of cooling liquid/gas for fluid system **and** foam

Guideline 10 : Design for Liberation

Avoid bolts/rivets of dissimilar materials (e.g. Fe bolts) as these produce generally a liberation problem therefore creates cross-contamination of the different recyclate fractions

Guideline 10 : Design for Liberation

Minimize the use of non reversible adhesives for incompatible/undesired material combinations

Glass glued to steel mask

Glued wood/plastic

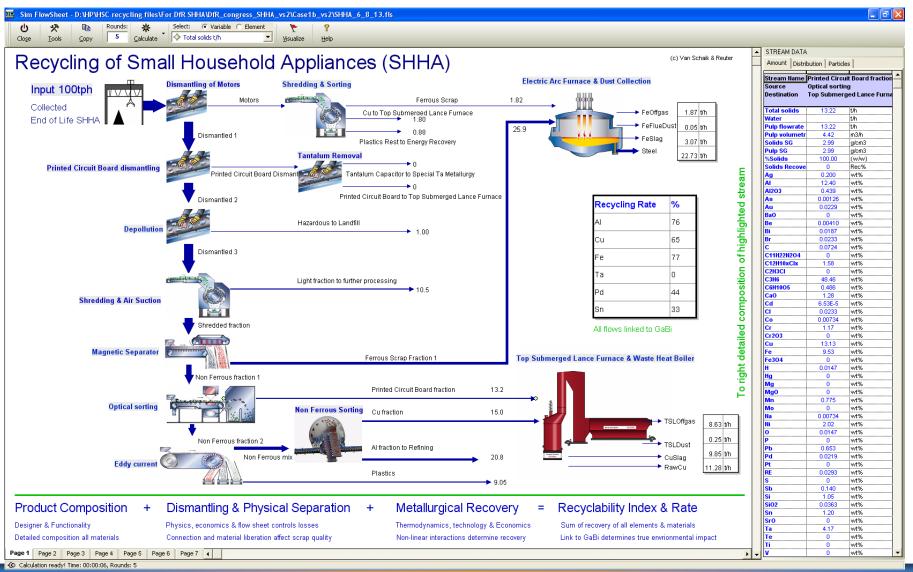
Shrink films

Sealed batteries

PUR glued to steel, AI, plastics

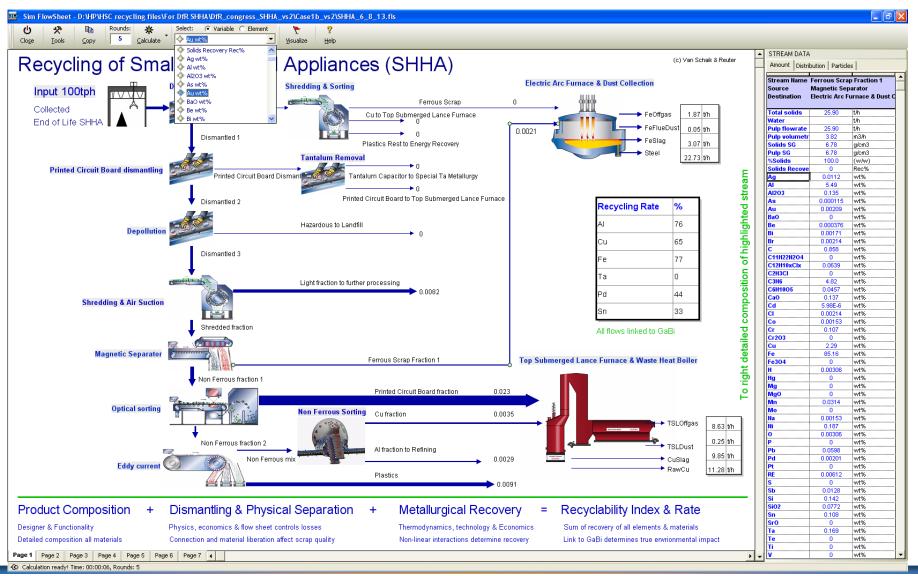
Guideline 10 : Design for Liberation

Particulate quality – an impression of un-liberated & multi-material particles

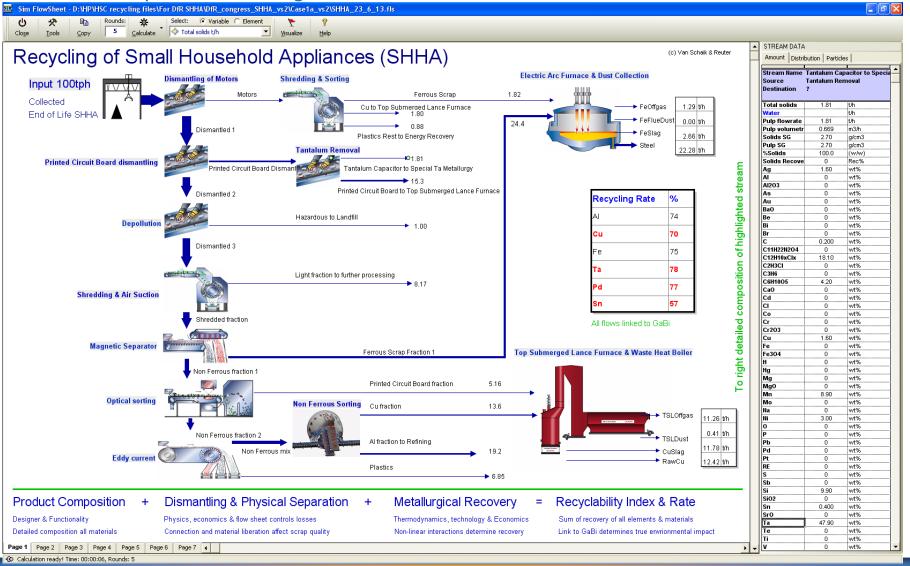


SIMULATION EXAMPLE

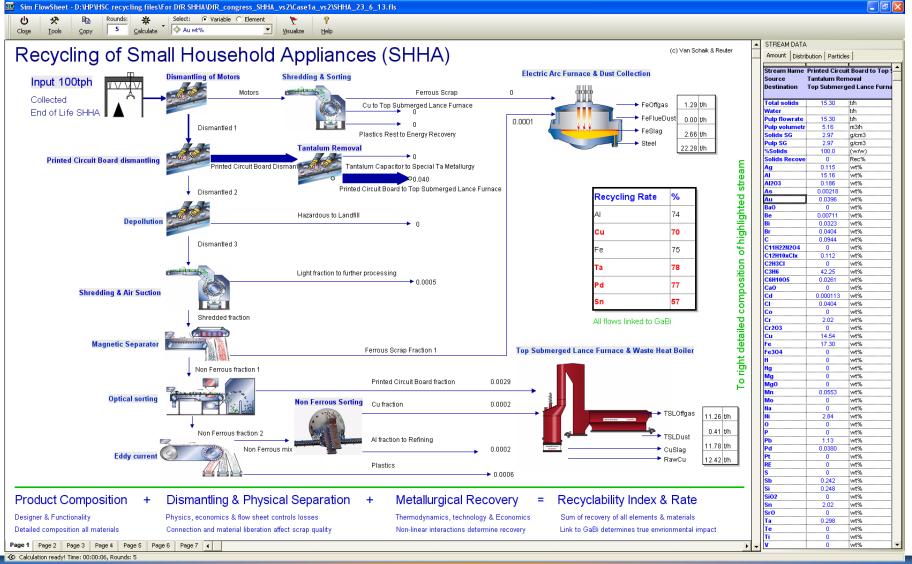
A Simulation Example : Quantification

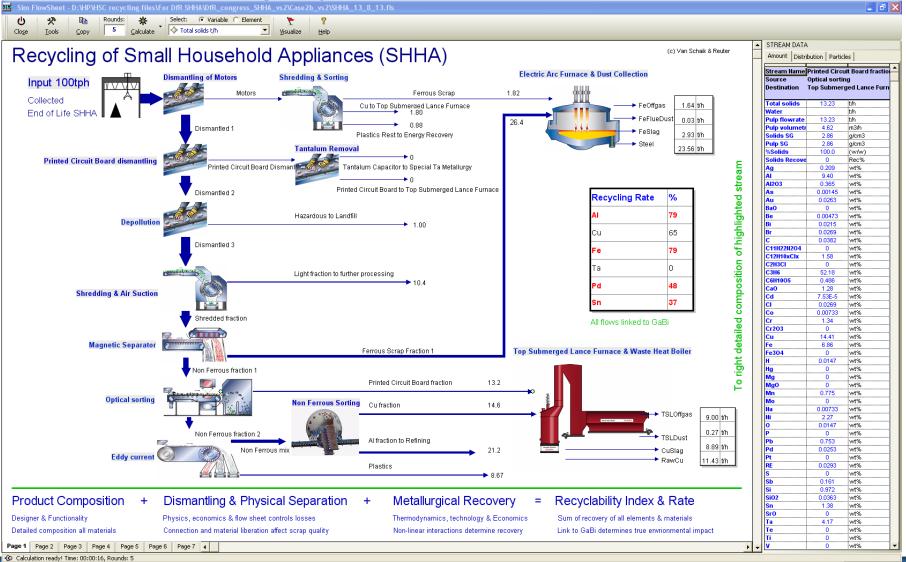

Quantification of Recycling Rate, Mass flows and quality/composition of flows

A Simulation Example : Quantification


Distribution/dispersion of elements/compounds can be traced – example on Gold

A Simulation Example : Redesign and recycling route

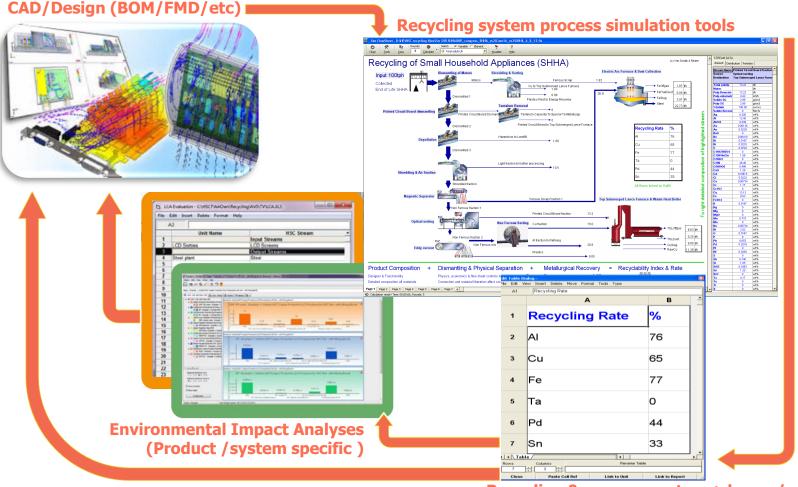

Removal/sorting of PCBs & Ta capacitors through design changes by e.g. labelling and identification options for sorting


A Simulation Example : Redesign and recycling route

Removal/sorting of PCBs & Ta capacitors through design changes by e.g. labelling and identification options for sorting – distribution of Gold

A Simulation Example : Design for Liberation

Effect of construction/connections of Printed Wire Board in product – improved liberation of Al heat sinks and Fe containing components/bolts



CONCLUDING REMARKS & RECOMMENDATIONS

DfR Rule 4 & 5 : Recycling Simulation linked to Design

Recycling process simulation tools, including environmental footprint must be linked to CAD/Design tools to realise technology based, realistic and economically viable DfR & Ecodesign

Recycling & recovery rates + losses/emissions (Product and recycling system specific)

Recommendations

(Policy) targets for Recycling and Eco-design

- should remain within what is technologically (physically and thermodynamically) and economically possible and be based on recycling process simulation tools and knowledge;
- must be set in ways that account for the inevitable losses of materials due to mixing in products for product functional specifications;
- should stimulate Best Available Technology/Techniques (recycling and metallurgical infrastructures)
- should reflect the interest and expertise of all stakeholders in the product and recycling system and stimulate interaction;
- should respect the dynamic (time-varying) product characteristics and recycling profile over time.

Acknowledgements

- Coolrec bv
- Remondis Electrorecycling GmbH
- Alba Service GmbH
- Indaver nv
- Sims Recycling Solutions
- Van Dalen / De Ruiter Schroot bv
- Markus Reuter (Outotec Oyj and Aalto University)

Contact

Dr. ir. Antoinette van Schaik MARAS - Material Recycling and Sustainability -Rijsbes 46 2498 AS Den Haag The Netherlands Tel.: +31 6 53836042 <u>A.vanSchaik@marasustainability.nl</u> www.marasustainability.nl

